论文:
1. "Fully Convolutional Networks for Semantic Segmentation" by Jonathan Long, Evan Shelhamer, and Trevor Darrell
2. "UNet: Convolutional Networks for Biomedical Image Segmentation" by Olaf Ronneberger, Philipp Fischer, and Thomas Brox
3. "Mask RCNN" by Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick
编程代码:
以下是使用Python和TensorFlow实现的图像分割代码的示例:
1. FCN:
```
import tensorflow as tf
Define the fully convolutional network architecture
def fcn(input_tensor):
conv1 = tf.layers.conv2d(input_tensor, filters=64, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv2d(conv1, filters=64, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(conv2, pool_size=2, strides=2)
conv3 = tf.layers.conv2d(pool1, filters=128, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv4 = tf.layers.conv2d(conv3, filters=128, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(conv4, pool_size=2, strides=2)
conv5 = tf.layers.conv2d(pool2, filters=256, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv6 = tf.layers.conv2d(conv5, filters=256, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv7 = tf.layers.conv2d(conv6, filters=256, kernel_size=1, strides=1, padding='same', activation=tf.nn.relu)
pool3 = tf.layers.max_pooling2d(conv7, pool_size=2, strides=2)
conv8 = tf.layers.conv2d(pool3, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv9 = tf.layers.conv2d(conv8, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv10 = tf.layers.conv2d(conv9, filters=512, kernel_size=1, strides=1, padding='same', activation=tf.nn.relu)
pool4 = tf.layers.max_pooling2d(conv10, pool_size=2, strides=2)
conv11 = tf.layers.conv2d(pool4, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv12 = tf.layers.conv2d(conv11, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv13 = tf.layers.conv2d(conv12, filters=512, kernel_size=1, strides=1, padding='same', activation=tf.nn.relu)
pool5 = tf.layers.max_pooling2d(conv13, pool_size=2, strides=2)
fc1 = tf.layers.conv2d(pool5, filters=4096, kernel_size=7, strides=1, padding='valid', activation=tf.nn.relu)
fc2 = tf.layers.conv2d(fc1, filters=4096, kernel_size=1, strides=1, padding='valid', activation=tf.nn.relu)
score = tf.layers.conv2d(fc2, filters=num_classes, kernel_size=1, strides=1, padding='valid', activation=None)
return score
Initialize a new TF session
sess = tf.Session()
Define the input and output placeholders
input_tensor = tf.placeholder(tf.float32, [None, height, width, channels])
target_tensor = tf.placeholder(tf.int32, [None, height, width])
num_classes = 10
Define the neural network
score = fcn(input_tensor)
Define the loss function
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=score, labels=target_tensor))
Define the optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(loss)
Initialize the variables
sess.run(tf.global_variables_initializer())
Train the network
for i in range(num_iterations):
feed_dict = {input_tensor: images, target_tensor: targets}
sess.run(train_op, feed_dict=feed_dict)
```
2. UNet:
```
import tensorflow as
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。