图像分割毕业设计

萧云 问答 2024-04-29 164 0

论文:

1. "Fully Convolutional Networks for Semantic Segmentation" by Jonathan Long, Evan Shelhamer, and Trevor Darrell

2. "UNet: Convolutional Networks for Biomedical Image Segmentation" by Olaf Ronneberger, Philipp Fischer, and Thomas Brox

3. "Mask RCNN" by Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick

编程代码:

以下是使用Python和TensorFlow实现的图像分割代码的示例:

1. FCN:

```

import tensorflow as tf

Define the fully convolutional network architecture

def fcn(input_tensor):

conv1 = tf.layers.conv2d(input_tensor, filters=64, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv2 = tf.layers.conv2d(conv1, filters=64, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

pool1 = tf.layers.max_pooling2d(conv2, pool_size=2, strides=2)

conv3 = tf.layers.conv2d(pool1, filters=128, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv4 = tf.layers.conv2d(conv3, filters=128, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

pool2 = tf.layers.max_pooling2d(conv4, pool_size=2, strides=2)

conv5 = tf.layers.conv2d(pool2, filters=256, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv6 = tf.layers.conv2d(conv5, filters=256, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv7 = tf.layers.conv2d(conv6, filters=256, kernel_size=1, strides=1, padding='same', activation=tf.nn.relu)

pool3 = tf.layers.max_pooling2d(conv7, pool_size=2, strides=2)

conv8 = tf.layers.conv2d(pool3, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv9 = tf.layers.conv2d(conv8, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv10 = tf.layers.conv2d(conv9, filters=512, kernel_size=1, strides=1, padding='same', activation=tf.nn.relu)

pool4 = tf.layers.max_pooling2d(conv10, pool_size=2, strides=2)

conv11 = tf.layers.conv2d(pool4, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv12 = tf.layers.conv2d(conv11, filters=512, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)

conv13 = tf.layers.conv2d(conv12, filters=512, kernel_size=1, strides=1, padding='same', activation=tf.nn.relu)

pool5 = tf.layers.max_pooling2d(conv13, pool_size=2, strides=2)

fc1 = tf.layers.conv2d(pool5, filters=4096, kernel_size=7, strides=1, padding='valid', activation=tf.nn.relu)

fc2 = tf.layers.conv2d(fc1, filters=4096, kernel_size=1, strides=1, padding='valid', activation=tf.nn.relu)

score = tf.layers.conv2d(fc2, filters=num_classes, kernel_size=1, strides=1, padding='valid', activation=None)

return score

Initialize a new TF session

sess = tf.Session()

Define the input and output placeholders

input_tensor = tf.placeholder(tf.float32, [None, height, width, channels])

target_tensor = tf.placeholder(tf.int32, [None, height, width])

num_classes = 10

Define the neural network

score = fcn(input_tensor)

Define the loss function

loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=score, labels=target_tensor))

Define the optimizer

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)

train_op = optimizer.minimize(loss)

Initialize the variables

sess.run(tf.global_variables_initializer())

Train the network

for i in range(num_iterations):

feed_dict = {input_tensor: images, target_tensor: targets}

sess.run(train_op, feed_dict=feed_dict)

```

2. UNet:

```

import tensorflow as

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文

最近发表

萧云

这家伙太懒。。。

  • 暂无未发布任何投稿。