遗传算法代码怎么跑出收敛图

```html

遗传算法代码解析与实现

遗传算法代码解析与实现

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的优化算法,常用于解决搜索和优化问题。以下是一个简单的遗传算法的Python实现:

import random

适应度函数(fitness function),针对特定问题定义

def fitness_function(solution):

这里假设解是一个列表,计算列表元素之和作为适应度

return sum(solution)

初始化种群

def initialize_population(population_size, chromosome_length):

population = []

for _ in range(population_size):

生成一个随机解(染色体)

chromosome = [random.randint(0, 1) for _ in range(chromosome_length)]

population.append(chromosome)

return population

选择操作

def selection(population, fitness_values):

使用轮盘赌选择法

total_fitness = sum(fitness_values)

selection_probabilities = [fitness / total_fitness for fitness in fitness_values]

selected_index = random.choices(range(len(population)), weights=selection_probabilities)[0]

return population[selected_index]

交叉操作

def crossover(parent1, parent2):

crossover_point = random.randint(1, len(parent1) 1)

child1 = parent1[:crossover_point] parent2[crossover_point:]

child2 = parent2[:crossover_point] parent1[crossover_point:]

return child1, child2

变异操作

def mutation(chromosome, mutation_rate):

for i in range(len(chromosome)):

if random.random() < mutation_rate:

chromosome[i] = 1 chromosome[i]

return chromosome

主要遗传算法函数

def genetic_algorithm(population_size, chromosome_length, generations, mutation_rate):

population = initialize_population(population_size, chromosome_length)

for _ in range(generations):

fitness_values = [fitness_function(chromosome) for chromosome in population]

new_population = []

for _ in range(population_size // 2):

parent1 = selection(population, fitness_values)

parent2 = selection(population, fitness_values)

child1, child2 = crossover(parent1, parent2)

child1 = mutation(child1, mutation_rate)

child2 = mutation(child2, mutation_rate)

new_population.extend([child1, child2])

population = new_population

返回最优解

best_solution = max(population, key=fitness_function)

return best_solution

测试

population_size = 100

chromosome_length = 10

generations = 50

mutation_rate = 0.01

best_solution = genetic_algorithm(population_size, chromosome_length, generations, mutation_rate)

print("Best Solution:", best_solution)

print("Fitness:", fitness_function(best_solution))

这段代码演示了一个简单的遗传算法的实现过程,其中包括初始化种群、选择、交叉、变异等操作。你可以根据具体的问题,调整参数和适应度函数,以解决不同的优化问题。

```

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文

最近发表

章睿

这家伙太懒。。。

  • 暂无未发布任何投稿。